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ABSTRACT

Diffusion MRI metrics yield insights into microstructural integrity in peripheral nerves fol-

lowing trauma and surgical repair. However, the relationship between diffusion-based

metrics and the underlying axonal loss and demyelination following traumatic periph-

eral nerve injuries (TPNIs) has yet to be systematically validated. Here we developed

methods to automatically segment histological sections from rat models of peripheral

nerve trauma to estimate axonal volume fractions (Vax). Based on these segmentations,

we found that conventional DTI-derived metrics exhibited significant linear associations

against histologically derived Vax. Yet interestingly, a relationship was not observed for a

more advanced multi-compartment model based on the spherical mean technique (SMT),

which suggested practical limitations of SMTmodel assumptions for peripheral nerve ap-

plications. Moving forward, the segmented geometries from this study, which accurately

captured the heterogenous nature of TPNI pathologies, will be used in finite difference

(FD) computer simulations to better understand the impact of these model assumptions

on MRI-derived Vax for the evaluation of successful or failed nerve repairs in TPNI.

INTRODUCTION

TPNI is characterized by a partial or complete transection of peripheral nerves, which results

in distal Wallerian degeneration and, if untreated, permanent axonal loss and sensorimo-

tor deficits.1 Surgical interventions are constrained as a result of diagnostic uncertainties.

Spontaneous axonal regeneration during post-surgery requires extensive time (∼1mm/day)

with a failure rate up to ∼40%, notably for higher-grade TPNIs.1, 2 Current methods cannot

monitor regeneration during this prolonged process; ergo, there is a clear need for tools to

monitor nerve regeneration after surgery to guide revisional surgeries when repairs fail.

Figure 1. Seddon/Sunderland classifications of peripheral nerve injury as neuropraxia, de-

gree I (left), axonotmesis, degrees II-IV (middle), and neurotmesis, degree V (right).

SMT can provide Vax estimates based on the powder averaged MRI diffusion signals arising

from intra- and extra-axonal compartments.3 Signal contributions from myelin are assumed

to be negligible due to rapid T2-relaxation.
3 SMT-derived Vax may act as an effective imaging

biomarker of axonal de/regeneration in the presence of heterogeneous pathophysiological

processes in TPNI for distinguishing axonal sprouting at injury sites from random neuroma-

induced fiber growth relative to conventional orientation-dependent DTI-derived metrics

(fractional anisotropy, FA; axial/radial diffusivity, AD/RD).4

METHODS

Tissue Samples. A total of 111 cross-sections of injured sciatic nerves 1, 2, 4, and 12weeks

post-surgery from adult ratswere acquired in preclinical models of nerve trauma and divided

into three treatment groups by injury type (Sham = 57, Cut/Repair = 27, Crush = 27).

Image Segmentation. Pixel-wise automated segmentation was performed on distal tolu-

idine blue stained cross-sections using CellProfiler. Post hoc manual corrections of

axon/myelin masks were done using GIMP for misclassified regions of interest.

Numerical Simulation. MRI Diffusion signals were simulated via FD based on the mor-

phometry of intra-axonal, myelin, and extra-axonal compartments, serving as the geometric

basis for DTI/SMT-derived metrics using the corresponding diffusion MRI data.

StatisticalAnalysis. DTI/SMT-derived metrics were correlated against histologically derived

Vax and quantified with the Pearson correlation coefficient. Outliers were excluded from

the analysis with respect to unrealistic samples (i.e., RD > 1 µm2/ms and Vax = 1).

RESULTS

Figure 2. Representative images of distal peripheral nerve cross-sections from histology.

The tissues were segmented into distinct, non-overlapping compartments quantified by

axonal, myelin, and extracellular volume fractions which sum up to 1. The volume fraction

for a compartment is based on the ratio of the volume fraction of interest to the total volume

fraction of the given space.

Figure 3. Proposed computational framework based on light microscopy. Shown are distal

sections 4weeks after crush and cut/repair injuries. The resulting geometrywill serve as the

basis for the FD computational modeling studies using corresponding diffusion MRI data to

constrain model parameters (e.g., intrinsic intra/extra-axonal diffusivities) and numerically

solve the Bloch-Torrey equation.5
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Figure 4. Linear correlations between DTI/SMT-derived metrics and histologically derived

Vax for all treatment groups across every timepoint. The relationship of DTI-derived metrics

(a, b, c) against Vax was significant with FA showing the strongest relationship. The relation-

ship of SMT-derived metric (d) against Vax did not demonstrate a significant correlation.

DISCUSSION

SMT-derived Vax has the potential to be utilized for predictive and prognostic purposes in

TPNI, as they pertain to histological measurements of Vax in peripheral nerves following

injury and repair.

Limitations & Future Directions. SMT-derived metrics are biased due to large axon di-

ameters and heterogenous compartmental T2s in peripheral nerves, unlike tissues in the

central nervous system, thus violating SMT model assumptions, including the impact of

undetected myelin signals. Future work will deploy FD models to understand the impact

of these assumptions and derive peripheral nerve-specific models for improved accuracy.
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